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SUMMARY

This study has been devoted to the development and evalu-

ation of a theoretical model of the proprotor on a cantilevered

wing, operating in normal cruising flight. This theory expresses

the wing and blade motion in coupled form, and can include any

number of mode shapes required to describe the motion accurately.

It has been applied to the investigation of the dynamic character-

istics of the Bell and of the Boeing design. The Bell rotors are
gimballed and the Boeing rotors are hingeless. The analysis in-

cludes the frequency response to gusts and cyclic pitch, and an

eigenvalue analysis of the dynamic system.

Based on the theoretical results included in this study, the

following conclusions may be stated:

(a) The choice of mode shape (rigid-body mode or elastic-coupled

mode) affects the damping significantly. The dependency of

the damping on the mode shape can be estimated for the first

beam bending mode. The blade inplane deflection opposing

the rotor direction of rotation, accompanied by the forward
out-of-plane deflection, increases the damping, comparing it
with the rigid-body calculation. The inplane deflection pro-
ceeding in the rotor direction of rotation decreases the

damping. The mode shape has little influence on the frequencies

of the system.

(b) The results of the frequency response are quite similar to those

of Johnson, in spite of the difference in the mode shapes. The
amplitude of the response is slightly different, since struc-

tural damping was not included in the present calculation, and
the mode shapes used were different.

(c) The analysis of the eighteen degree-of-freedom system showed

that the higher-frequency degrees of freedom have small influ-

ence on the basic degrees of freedom.
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Stresses or bending moments of the wing or blade can be

predicted from the motions of the wing and blade obtained from

this analysis. In addition, this analysis may be applied to the

development of an automatic control device to alleviate the gust

response of the vehicle.
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SECTION 1

INTRODUCTION

1.1 General

It has been recognized that the tilting proprotor aircraft,

one of the composite aircraft family, is a very promising concept

that combines into one aircraft the hover efficiency of the heli-

copter and the high-speed efficiency of the fixed-wing aircraft

(Refs. 1-3).

The typical tilting proprotor aircraft is a twin-engine air-

craft with tilting rotors mounted on each wing tip. Its configura-

tion consists of a fuselage, a high swept-forward wing, and an em-

pennage. The empennage has a vertical stabilizer and rudder, and

a horizontal stabilizer and elevator. The large diameter rotors

are three bladed. hinaeless or gimbal-type rotors which are mounted

on the rotor shaft. The rotor shaft is connected through the gear-

box to each engine in the pylon attached at the wing tip. The con-

version system provides the rotation of the rotor pylon from the

vertical position to the horizontal position and return, in order

to obtain the helicopter mode or airplane mode corresponding to the

desired flight regime.

When the aircraft takes off or lands, the rotor pylon is ro-

tated to the vertical position to achieve vertical takeoff or land-

ing similar to the helicopter. The flight controls apply pitch

changes to the rotor to provide the longitudinal and directional

control corresponding to helicpoter rotor cyclic pitch, while the

collective pitch controls vertical flight and roll motion.

In high-speed flight, the rotor pylon is rotated-to a hori-

zontal position similar to that of the conventional propeller type

aircraft. The thrust is produced by the rotor, and the lift by the

wing. The flight controls are provided by the conventional aircraft



control surfaces such as the elevator, rudder and aileron.

In addition to the above modes, various conversion modes
can be obtained. At that time the rotor pylon tilts to some posi-
tion between the vertical and horizontal, where it can be safely
locked. This makes STOL-type operations possible.

The tilting proprotor is exposed to a severe aerodynamic
environment including gusts, the wake of preceding blades, and
harmonic airloading like a helicopter. But its dynamic and aero-
elastic characteristics are in many ways unique; for example, the
large flexible blades with a large amount of twist experience sig-
nificant coupled out-of-plane (flapping) and inplane (lagging)
motion.

As described later in Subsection 1.2, several years of ex-
perimental and theoretical analyses have been conducted to estab-
lish a fundamental understanding of the dynamic and aeroelastic
behavior. However, it is necessary to understand the aeroelastic
response of this aircraft to atmospheric turbulence more adequately
and to predict it more accurately, since during the preliminary
design phase, vibration level prediction is required in order: (a)
to evaluate the fatigue life of the blade and wing, (b) to estimate
the ride qualities of the vehicle, and, if necessary, (c) to develop
suitable gust alleviation devices.

Several design compromise concepts, which make the present
analysis distinct from helicopter aeroelastic analysis, are now
stated briefly.

In order to obtain high hover efficiency from the rotor, it
is desirable to achieve low disc loading, in other words to use
large-diameter rotors whose swept discs reach nearly to the fuse-
lage. When the aircraft is operated in high forward speed axial
flight in the airplane mode, the rotor is operating at a high inflow
ratio (the ratio of axial velocity to blade tip speed). This pheno-
menon is very different from the helicopter rotor operation which
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involves low inflow. High inflow operation requires a large built-

in angle of twist for efficient cruising. Therefore, significant

coupled out-of-plane (flapping) and inplane (lagging) motion occurs

in the large, flexible and twisted blade. This phenomenon makes

analysis more complicated.

The engines and gearboxes are usually located at the wing

tip to avoid transmitting high power through a long drive shaft.

This leads to low wing natural frequencies and possible resonances

in the low frequency range. Also, the center of gravity of the

pylon and rotor does not usually coincide with the elastic axis of

the wing. Hence, this results in coupled bending and torsion.

1.2 Brief Survey of Past Work

A good review and an elementary description of the dynamic

and aeroelastic problems associated with the tilting proprotor air-

craft were given by Reed in Ref. 4 and Loewy in Ref. 5. In this

report no attempt will be made to repeat the reviews given in Kers.

4 and 5. The only references cited here will be those pertinent

to the problem being treated.

The possibility of propeller whirl flutter -- a dynamic in-

stability that can occur in a flexibly mounted aircraft engine-

propeller combination -- was first recognized in the late 1930's

by Taylor and Browne (Ref. 6). It was not until 1960 that it be-

came a problem of practical concern -- with the appearance of the

turboprop aircraft.

Following the two fatal turboprop aircraft accidents, it

was established that propeller whirl flutter could have occurred

if the nacelle stiffness was severely reduced, for example by a

structural failure. Several generalized studies were conducted

at NASA-Langley. One of them was carried out by Houbolt and Reed

in Ref. 7; it gives an elementary and basic treatment of the equa-

tions of motion and propeller aerodynamics for propeller-nacelle

whirl flutter.
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Because VTOL configurations have unconventional propeller-

rotor systems, whirl flutter was a major design consideration on

present proprotor aircraft.

The analysis presented in Ref. 8 is for a two-bladed rotor

free to tilt on a shaft with two nacelle degrees of freedom (pitch

and yaw). No lag or coning degrees of freedom are considered.

The analytical method was compared with test results for an exist-

ing tilting proprotor aircraft (the Bell XV-3) and of subsequently-

tested scale models. They showed good agreement.

Young and Lytwyn in Ref. 9 present a very precise analysis

for the whirl stability of a multi-bladed rotor mounted on a nacelle

which has pitch and yaw degrees of freedom. Each blade has one flap-

wise degree of freedom. The blade mode shape is assumed to be a

rigid body mode shape. It was concluded that whirl stability is

poorest when the nacelle pitch frequency equals the nacelle yaw

frequency, but in this situation nacelle damping is quite effective.

There is an optimum value of flap bending frequency somewhere between

1.i .,Ld 1.35 !. highly sLabilized whirl motion.

This analysis neglects (as do Refs. 4 and 8) the effect of

coning on proprotor aerodynamics, and flap bending mode shapes other

than the rigid blade mode used. Also, autorotation flight must be

considered as well as powered flight.

In Ref. 10, Gaffey points out.that a highly coupled blade mode

has substantial flap bending even if the primary mode involves in-

plane motion. This occurs in the case of a highly twisted blade or a

blade operating at high geometric pitch angles such as a proprotor

blade. The analysis shows that a moderate amount of negative 63
(flapping angle at the blade root gives the pitch angle reduction of

the amount 8-tan 83 if 63 is positive) has a stabilizing influence

on proprotors subject to flap-lag instability at high inflows.

Preliminary design studies of prototype vehicles (Refs. 11 and

12) as a part of the current NASA/ARMY sponsored tilting proprotor
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research aircraft program give some results from dynamic and aero-

elastic analyses done by Bell and Vertol.

Johnson (in Refs. 13 and 14) derived the equations of motion

for a cantilever wing with the rotor at the wing tip. He develops

a nine degree-of-freedom model which involves blade flapping motion

and lagging motion (each has one collective and two cyclic motions,

respectively), wing vertical bending, chordwise bending, and torsion.

This model is applied to two proprotor designs and compared with the

results of some full-scale wind tunnel tests. It shows reasonable

correlation between theory and experiment.

In conclusion, it appears that most of the investigative work

has been concerned with whirl flutter. The above review shows that

more knowledge is needed for the solution of tilting proprotor air-

craft dynamic and aeroelastic problems.

1.3 Objectives of the Present Study

The objective of this study is to establish a verified method

of predicting the dynamic and aeroelastic behavior of the tilting

proprotor aircraft in order to evaluate the fatigue life of the

blades and wings and also to estimate the ride quality.

The equations of motion for a cantilever wing with a rotating

rotor at the wing tip will be derived as consistently as possible.

The great complexity of rotor blade motion will be included by ac-

counting for blade rotation (i.e., centrifugal and Coriolis forces),

significant inplane motion, and the large twist and high pitch angles

at high inflows.

The resulting system of equations, obtained using modal

analysis, will be applied to the analysis of the two proprotor de-

signs (one is a rigid, soft-inplane type rotor and the other is a

gimballed, stiff-inplane rotor).

Finally, the eigenvalues and frequency response of each pro-

protor design will be determined to establish their dynamic charac-
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teristics; the results of the analyses will be compared in terms of

eigenvalues for normal modes (coupled elastic modes), assumed modes

(uncoupled elastic modes), and rigid body modes, using Galerkin's

method.
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SECTION 2

THE EQUATIONS OF MOTION

2.1 Model and Coordinate System for the Analysis

The primary interest of this study is in the dynamic and

aeroelastic phenomena of the wing, pylon, and rotor of the tilt-

ing proprotor aircraft in cruising flight. Hence, the dynamical

system considered here consists of a cantilever right wing with

a pylon at the wing tip, and an 1l-bladed rotor mounted on the

pylon, as shown in Fig. 1. The model will be restricted to the

cantilever wing, since it is sufficient to obtain a basic under-

standing of the proprotor motion, and many such proprotor models

have been tested in wind tunnels.

Therefore, the aircraft rigid body motions are neglected

and the wing antisymmetrical. m des re a!go dropped. The left

wing motions including the pylon and rotor are given by the

mirror image of the right wing.

The wing is assumed to have a high aspect ratio, so that

strip theory is used for the wing aerodynamics and beam theory

for elastic bending and torsion. Wing sweep and dihedral will

not be considered, but angle of attack and angle of twist (built-

in twist) will be considered. The elastic axis is assumed to be

a straight line. The elastic axis coincides with the y-axis as

shown in Fig. 2. The free stream vector coincides with the z-

axis. Therefore, the angle between the z-axis and the chordline

of the wing results in a wing angle of attack (positive nose up).

The wing motion (Fig. 2) consists of elastic bending and elastic

torsion. The deflection u of the wing elastic elastic axis per-

pendicular to the y-z plane is called vertical or beamwise bend-

ing (positive upward). The deflection ww parallel to y-z plane

is termed chordwise bending (positive forward). Torsion pw is
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defined as pitch angle change (positive nose-up).

A pylon of large mass and moment of inertia is assumed to

be rigidly attached to the wing tip. Therefore, the pylon motions

(Fig. 2) corresponding to the wing motions are defined as vertical

displacement rx along the x-axis (positive upward), longitudinal

displacement rz along the z-axis (positive forward), pylon yaw vy
about the x-axis (positive counterclockwise), pylon pitch vp about
y-axis (positive nose-up), and pylon roll vr about the z-axis (posi-

tive for clockwise rotation, when looking forward). The above py-
lon motions are accounted for at the point where the wing elastic

axis crosses the plane, parallel to x-Z plane, which includes the

rotor shaft. The pylon lateral displacement along the y-axis is

neglected as a higher order effect.

The pylon and the rotor shaft are assumed to be parallel to
the free stream in equilibrium flight (rx, rz, y', Vp, and vr are

all zero), regardless of the wing angle of attack.

The rotor is located at the distance h IFia. 2 from the

wing tip elastic axis to the rotor-hub (positive forward from the
elastic axis). The distance h is termed the mast height. The rotor

consists of N blades, whose rotational speed n is defined as positive

if clockwise looking foward. The blade (Fig. 2) has out-of-plane

(flapping) deflection Wn, defined positive for forward displacement

from the disc plane (upward in helicopter mode, while the rotor

shaft is vertical), and inplane (lagging) deflection vn, defined

positive for clockwise deflection regardless of rotor direction of
rotation. The lower case letter n means the nth blade, n=1,2,...N.
Blade torsion is neglected here.

The azimuth position Yn (Fig. 3) of the nth blade is de-
fined as:

8



= t + V1 + - (2.1)

where Y,- is measured from the vertical and t is time. The
n

phase angle between blades, A*n is defined as

n-i) 2 (2.2)
N

The azimuth position of the nth blade excluding the pylon roll

motion is denoted as

jC ~ O- t 4e A. ~(2.3)

2.2 Basic Formulation for Powered Flight

The governing linear equations of motion are derived in

this subsection. A more complete and detailed derivation is

given in Appendix A.

The equations involve ten unknowns: vn wn rx , rz' y, p ,
r' W,. and ; acually v and wn reprcent N unknowns, reE-
*rw 'w ..... w n n .......
pectively, but for convenience they may be treated as one unknown

without inconsistency). The equations consist of three categories:

the blade equations, the wing equations, and matching conditions

between rotor and pylon.

The blade equations are complicated by the pylon motions

which produce the centrifugal forces and Coriolis forces. The

wing equations are derived from beam theory. The rotor is rigid-

ly attached to the pylon for the powered flight case and, there-

fore, rotor motion is related to pylon motion; this gives the

matching conditions between the rotor and the pylon.

(a) Blade Equations

B(E. + () 8 c)9 .



-(T -- +- + --"-" + 2 n

wnere

rcrunning spanwise coordinate for thco
+r A91. (2.4)

twist and collective pitch.

Zoe,

- (2.5)

wnere

r running spanwise coordinate for the
blade from the axis of rotation.

0B angle formed by the rotor disc plane

and the blade sectional chordline,

usually including built-in angle of

twist and collective pitch.

(EI)c bending stiffness in the blade sec-

tional chordline direction.

(EI)B bending stiffness in the direction

perpendicular to the chordline.

m spanwise mass of the blade per unit

length.

10



T centrifugal force at r expressed as:

T=: L1 r d r

P resultant force per unit length in

the z direction on the blade (posi-

tive forward).

Pe resultant force per unit length in

the circumferential direction on

the blades (positive clockwise when

looking fowardY.

( ) n about nth blade.

The blade geometry is shown in Fig. 3.

(b) Wing Equations

+ [ .w + .W E I OW C .W]

--

,+ 'P- " + S.P (2.6)

+ j I)CI-or)1.n C O

+ "Ivz UjW i(2.7)
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-'- w + I V *' + SoC u-v = (2.8)

where

ew angle between the wing sectional chordline

and free-stream direction.

(EIw)c (EI )B wing bending stiffness defined similarly

as for the blade.

(GJ w) wing torsional rigidity.

mw spanwise wing mass per unit length.

Iw  wing mass moment of inertia about the

elastic axis per unit length.

s static mass moment of wing segment about the

elastic axis defined as

s = ms

where s is a distance between the center of

gravity and the elastic axis of the wing

and positive if center of gravity is ahead

of the elastic axis.

Fx, Fz  resultant wing force per unit length in the

x and z directions,respectively.

M resultant wing pitching moment per unit
y

length.

The wing cross-sectional geometry is shown in Fig. 4, and

pylon motions are expressed with wing deflections as

12 (2.9)

12



(c) Matching Conditions between the Blade and Pylon

M (d a

+ +-, + .

S; Vp PS= "41K +V FeC4* BX(211

frI I Lw -- w. tll~ IS%-X

Waa
- 2{(EIw)r ( ~LA 42 r1

I + (10).. %kr,, (EIcl .,

flati 6*

j~(Pe 4 -4)4) +,P 1+r3P

13



+ x cr - Uk oe I tr] (2.12)

+ Oro, + ) - 2Qr( ,d4, -r(u r.co T

+ V Pz) - rG, pp.,, P+. Pz4 ApL

* TPz CooK](2.13)

+ [(.r . + r .) d ]
1%61 1

where
M Pylon mass
p
I Pylon yawing mass moment of inertia
Py

I Pylon pitching mass moment of inertia
Pp

I Pylon rolling mass moment of inertia

(" , (*) Time derivative applied to entire formula

in the parentheses

14



The above equations are derived independently of Refs. 7,

9, and 13. However, if the wing motions are eliminated, the

equations are similar to the basic whirl flutter equations derived

in Ref. 7 or Ref. 9.

2.3 Supplement for Autorotational Flight

Autorotation may be defined as the condition of flight where

there is no restraint of the rotor rotation about the rotor shaft.

Therefore, no rotor torque is transmitted to the shaft, and no pylon

roll motion is transmitted to the rotor. This means that rigid body

rotation of the entire rotor about the shaft will be produced. This

rigid body rotation is designated as vR (positive clockwise).

The equations of motion for autorotational flight are almost

the same as those for powered flight. The equations: 2.4, 2.6, 2.7,

2.8, 2.10, 2.11, 2.12 and 2.13 are the same. In Eq. 2.5 Vr must

be replaced by vR. In lieu of Eq. 2.14 the fact that the rotor

inplane motion is independent of the pylon roll motion in auto-

rotation flight results in Eq. 2.15 as follows:

At Lo o (2.15)

This yields a new degree of freedom.

The angle in Eq. 2.1 is also expressed as

(4,.flt 4~-)R a~ (2.16)

in this case.
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SECTION 3

AERODYNAMIC FORCES

3.1 Rotor Aerodynamic Forces

The rotor aerodynamic forces will be evaluated next. The

analysis is almost the same as in the helicopter blade element

theory. The significant difference is that it is impossible to

assume small angles for the angle of twist, the collective pitch

and the angle of attack of the blade operating in the high inflow.

The basic idea is presented by Young and Lytwyn (Ref. 9).

The section aerodynamic lift and drag forces dL, dD yield

the resultant forces Pz and P8 as follows (in Fig. 5),

Pz = dL cos i - dD sin (3.1)(3.1)
P = -dD cosi - dL sin ¢i

where

dL = 1/2 pacBU (3.2)
(3.2)

dD = 1/2 p cBU 2CDO

and the angle 4i is defined as,

U
sin i =--

i U

The blade section inplane velocity (positive counterclock-

wise direction) is UT and U is the blade section out-of-plane

velocity (positive for negative z direction). Therefore, the re-

sultant air velocity is expressed as,

UvP V (3.4)
In cruise flight,

UT = r (3.5)
U =V +v

16



where V is the forward aircraft speed (axial velocity) and v is

the induced inflow velocity. The induced velocity is very small

compared with the forward velocity V in the high in-flow operation.

Therefore the induced velocity is neglected in this entire study.

The inflow ratio X is defined as the ratio of the axial

velocity to tip speed of the blade:

V
S= . (3.6)

The section effective angle of attack is

Sa +GP - Up +Oc (3.7)
1Uri

the angle 0B formed by the disc plane and the blade chordline in-

cludes the angle of twist and collective pitch. Therefore

where eAT is the built-in section angle of twist of the blade,

which is zero at 75% span of the blade, and 8 is the collec-
.75

tive pitch to be obtained from the performance calculation.

Usually 075 is:

) (3.9)

The first term express the inflow at 75% span and 8D depends on

the proprotor design to obtain the optimum cruising performance.

Pitch-flap coupling 8pF, and blade pitch control 0c will be dis-

cussed later. Finally:

S=* GA' -r . +O -'e- 13 + G- (3.10)
1lu7T

17



Substituting Eqs. 3.2 and 3.3 into Eq. 3.1 yields

p = PC.a UIL UIjX - PC.CDo UUp

P.= ? -5pcCo. UI UI -APc6a UU(3

where

sign (()=

(3.12)

Next the perturbation method is applied to Eq. 3.11 to derive the

aerodynamic forces of the rotor in disturbed motion:

P su, + +

Ps = (P.)+ ( ) 5 + (+ , - & ( ) or (3.13)

In these equations, ( )0 means those values are evaluated

in the equilibrium state, given by the following expressions:

(P,)c = Pc.a (n'c t[O a - A r.

- pCs.IR [-0. L -C Cu.
2 . a

18(3.14a

18



-2

Z- (4 = 0, 1, 2,3) (3.15)

x. Y (3.16)

o = A .- (3.18)

The perturbation quantities 6 UT , 5Up and c will be con-

sidered next. The perturbation velocities SU and 6U consist of
rotor and pylon motion and gust velocities.

The velocity at the position of the blade axis in x,y,z

coordinate (Fig. 2, see details in Appendix A) can be written as

19



Wind velocities at the blade element in the disc plane UT are then
obtained by applying the transformation matrix due to pylon motion

to change the x,y,z coordinate system to blade disc coordinate

system. Wind velocities'UxB and UyB are XB, YB components of the

inplane velocity of the blade in the xB-YB coordinate system fixed

to the rotor hub (Fig. 6). Gust velocity as well as the aircraft

forward velocity is included.

Up j - L + (
I U L 1 V + 14 (3.20)

Tangential velocity UT is expressed as

UT = - UxS AL 4,. + U coO,4 (3.21)

After higher order terms are neglected,

20



+ U, + y Y- co (3.22)

Finally the perturbation velocities 6UT and 6Up are given as

V p

+ L)= +3 -1i o)o

where

(3.24)

Pitch-flap coupling gives a change in blade pitch angle propor-

tional to the flapping angle at the root. It is defined as

Pfr, i e 3 (3.25)

The angle 63 is a design factor to yield the optimum pitch angle

gain to prevent blade motion instability. Blade pitch control

consists of collective pitch control and cyclic pitch control.

(8,, = G.(t) + ecCt) c.YOSi + G,.tt) A4. P .. (3.26)

Therefore, the perturbation quantity associated with the angle of

attack of the blade is simply derived from Eq. 3.7 as

' + GPF e (3.27)
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3.2 Wing Aerodynamic Forces

Wing aerodynamic forces are derived by the blade aero-

dynamic perturbation method. Aerodynamic coefficients are ob-
tained from strip theory (Ref. 15).

The wing element lift, drag and pitching moment (Fig. 7)

per unit span length can be written as

dL = 4 P U; avow cw

dD= -.P u) Co., c

d jp (u m+ , CMWo ) C,- (3.28)
These values are transformed to the x,y,z coordinate system:

F = dL coo4 - 4D Ai. O

M " = dM4* +-dL- c,-
S pc ( C.c. +c, oC,,) U-

+ I 4 a, Ur0 (3.29)

where

, (V+ + r 4+( +U)

SV + rj, + U' (3.30)

22



and e is the distance (nondimensionalized by wing chord) between

the elastic axis and the quarter-chord line (positive if the

quarter-chord line is ahead of the elastic axis).

Hereafter the small angle assumption may be used for the

wing aerodynamic forces because of the small angle of attack and

angle of twist. Then it is approximated that sin 4w = *w'
cos *w = 1, etc.

Perturbation velocities U, w w, p , uG and wG are chosen to

express the aerodynamic forces. The perturbation equations are

then given by

sistency although the blade steady state aerodynamic forces (Pz o

This study is concerned only with deviation from the equi-

librium state. Then the steady state aerodynamic forces (Fx)o,

(F ) and (M )o may be dropped from the equations without incon-

sistency although the blade steady state aerodynamic forces -(PZ)o
and (P0)o cannot be neglected since they influence the pylon

motion.

Applying Eq. 3.31 to Eq. 3.29, the following expressions

for the wing aerodynamic forces due to wing motion are obtained

23



-- PcV Vw (+ .w

F= lpcVa, ty

0

O I Ur

- PC, V 2 w P

+ oV
Pc, V ao,, t

L p(3.32a)

.2T

-Pcw V\T 4. {
0

-pcw vv lkrj

(3.32b)
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-pCW(c', + ar ) ,

M = yCwv(c..+c. ,a .+ a~,~o) ,

0 P1

4--

I - I- c V ( c , + a, ) A

pC1 a V( C .. + C a,rO + Ur

(3.32c)

where the angle of attack in equilibrium state is given as

Owo = eW (3.33)
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SECTION 4

MODAL ANALYSES

4.1 Variational Functional

In order to apply Galerkin's method the variational func-

tional is derived from Eqs. 2.4, 2.5, 2.6, 2.7, 2.8, 2.10, 2.11,

2.12, 2.13, and 2.14.

1= - [ (EI)c asoc, o tf t Aj

-I 6

R at

+ I

Hal

+ ;,w -2D,, co (k4,
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L *

+~~ ~wLj 4w '
S2

4 -~JrP~rd L L1 tSw PwG&

7- 2l . +I-I

2. J~~IpL~B +(IX).'Bj(~

+- [f&-Pe4.q4,+CE~z drJ rz

+ 

+4

+ 2.

+t~(E3 -oEdp8pe 
VIE~pIf~p~~Ht

Pr

+ +~M ~+t~ I 't Cooj

~ -~ %d un, C-00j
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(4.1)

4.2 Free Vibration of the Blade and Wing

In preparation for modal analysis of the basic equations,

the free vibration of the rotating blade and the cantilever wing

will be considered. It is very advantageous to use the natural

frequency of the free vibrating beam to represent the quite com-

plicated stiffness terms of the beam.

The variational functional for free vibration of the ro-

tating blade is derived from Eqs. 4.1, neglecting aerodynamic

forces, pylon and wing motion.
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Assume a series solution in terms of normal modes which express the

coupled motion of inplane and out-of-plane motion

S .(t) (4.3)

Substituting Eq. 4.3 into Eq. 4.2 and applying Lagrange's

equations as follows:

Trzanr o (4.4)

yields

([CEIc +< o)oo .  (

~+ I odo + (E), a\ r '/ ) .)29
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4 - (E } A... dOc d Iri)

-4 -I + T -AV Vj -AY

-Xj (wwj V ) A (4.5)

where X. denotes the jth rotating undamped natural frequency of the

blade. Simplification of Eq. 4.5 will result from use of the ortho-

gonality condition (Ref. 15) of the normal modes which is expressed

as

+ 3='
I t ( v Wj + x vi Va r-

0 j 4 (4.6)

The amplitude of the mode shape is normalized to unity as

+ W) I. (4.7)

Hence, Eq. 4.4 results in

*( rEI\- g 30)8 CoGo

+ + (EI)e,4(,20f (_I)

++ dy1  (r
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+ T -r" dr + st Wn "v v

j

0 j L (4.8)

In the similar way the free vibration of the wing will be analyzed,

treating the rotor and pylon as lumped masses at the wing tip. The

wing deflection can be expressed as

Then, pylon motion is described by

• =g a.(t)

T] (4.10)
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where

VyR -

-...., _ ._. a
y 46 .. a- (4.11)

a,&)
The wing coupled modes are normalized as

Ww + + 2]

+ JL + +
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Hence,

+ ( CE1w) + (Ew)4 A A co

0O LJ (4.13)

where A is the jth wing undamped.natural frequency.

4.3 The Variational Functional Described in Modal Form

The simplified variational functional expressed in terms of

natural frequencies is

-n - z . 3 +

+~ [~- r.(j .- _;33
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forces. Details are discussed in Subsection .5.

The principle of virtual work is applied to Eq. 4.14 to

obtain the modal equation for the blade and wing.

For the blade the modal equation can be expressed as

S+ ,+ v3 1 -v. +
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+V w.j - 4 v4 & o/ +wg v~y

- W c a & 4 + 2 f) c. CAO4"

+:2 R-f-

-4. +? (4.15)

where

Wy = R4 jm rLj4rC

(L= o,)

( - o, () (4.16)

R., = P. vd

Y-. C (4.17)

For the wing modal .equation can be expressed as
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. d

where f. denotes the loading due to the rotor aerodynamic forces

derived from the work Ww, and g the loading due to wing aero-
dynamic forces derived from the work W..

4.4 Rotor Non-Rotating Coordinate System

4.4.1 Rotor Non-Rotating Coordinate System
The equations of motion 4.15 and 4.18 of the blade and wing

have periodic coefficients because of the appearance of sin~n andcoswhere. To avoid difficulties due to these periodic coefficients,

the rivourier-type coordinate system will be chosen to describe the

motion in the non-rotating system instead of the rotating system

(Ref. 16).

(a) For the hingeless rotor, the Fourier coordinate system

is described in general as

+ Q* (-1" (4.19)
J36
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where Qjo is the collective motion, Q and Q are cyclic

motion of mth order, defining tilting or warping of the rotor

plane and Qj. is differential collective motion (only occurring

for even N-bladed rotors).

Since many recent proprotor designs have three-bladed ro-

tors, this study is concentrated on-the odd N-bladed rotor model.

Therefore, the last term Q. of Eq. 4.19, the differential col-

lective motion, will be dropped hereafter. In addition to this,

the higher order terms Qjc(2)' Qjs(2 ) ...Qc(m) Qjs(m) are not

coupled with pylon motion. They represent internal rotor motion

and usually make only a small contribution to rotor motion.

Therefore they are also truncated in this study. Hence,

aj + Q C. C K + (4.20)

By inverting the system of Ea. 4.20. the new dearees of

freedom of the non-rotating syste can be obtained:

oj° -

N Hl

The same approach may be applied for the rotor generalized force

due to periodic aerodynamic forces.

-, - t (Y. . +Fir

= c(4.22)

37



(b) For the gimballed rotor, special care must be taken

since it has both collective mode shapes (symnmetrical modes with

claped boundary condition at the root) and cyclic mode shapes

(antisymmnetrical mode shapes with hinged boundary condition),

while in the hingeless rotor case both collective mode shapes and

cyclic mode shapes are the same. Therefore, collective motion is

described with collective mode shapes W, V0 and cyclic motionc c
with cyclic mode shapes W , V.

This expression is consistent with the derivation of equations of

motion up to now, if mode shapes Wj, Vj of the coefficients of the

blade collective motion are replaced by the collective mode shapes

W?, V° in Eq. 4.15 and 4.18, and those of cyclic motion are re-
c c Therefore, the derivation

placed by the cyclic mode shapes W , V . Therefore, the derivation

of equations of motion hereafter is based on the hingeless rotor

case, and those equations can be applied to the gimballed rotor

case as stated before without confusion. The coefficients asso-

ciated with collective mode shapes are denoted by superscript 0

and those with cyclic mode shapes by superscript c.

The truncation of higher order terms and of the differential

collective motion in Eq. 4.19 is also applied to the gimballed ro-

tor case by the same reasoning as for the hingeless rotor case.

The orthogonality condition for the gimballed rotor case is

different from the hingeless orthogonality condition. The entire

rotor system including periodic functions sinn and costn must be

considered. For example, the orthogonality condition between the

collective mode and the cyclic sine mode is described as
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C= (4.24)

Since 4n. is the phase anqle defined in Eq. 2.3, the summation over

n=l, ... N of sinn becomes zero.

4.4.2 Pitch-Flap Coupling in the Non-Rotating Coordinate System

Pitch-Flap Coupling is expressed in Eq. 3.25 as

S "I. s'ij, (3.25)

The substitution of mode shapes into this expression

gives

KII Kr Q;,4 Q,-, CP,, + Qi s AACL (4.25)

where

dK -y" , (4.26)
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For the hingeless rotor case considered here, Kpi is always

zero because the slopes of blade mode shapes at the root are zero,

due to the clamped boundary condition.

For the gimballed rotor case, Eq. 4.25 is rewritten as

Q i 4K Q. + PKi(QL co4,

Q L )(4.27)

where

c W t I (4.28)
rd r 1o

From the definition of the collective mode shapes, K is

zero. Therefore, for the gimballed rotor case the pitch-flap

coupling contributes only to the cyclic motion of the rotor, not

to the collective motion.

4.5 Aerodynamic Forces Described in Modal Form

4.5.1 Blade Aerodynamic Forces

From Eq. 4.17 blade aerodynamic force is described as

+P.j +P~j= (E'&j i.wj)dv (4.29)

The application of Eq. 4.22, accompanied by the substitu-

tion Eq. 4.21 into Eq. 3.13 yields
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(Ipe t?~j~)0n' =i Gj 0; a

+ 4vj 4- +7+v.30)

4 L A f + Kpz QGi

+ Gv - (4.31)

Pi ++Pj n' 4 4

V + I ' (ai

f.3 8 (4.32)
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where

Vi tj + M

1 F l + FS1jd

Cj (R + Ff6 )xdz

FeJ = ( )/

F* 2 = ( \/-GL 2.

42
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rt FjC2 VT]

-y! + ~ (4.33)
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4.5.2 Wing-Loading Due to Blade Aerodynamic Forces

The virtual work done by wing loading due to blade aero-

dynamic forces is described as

2. (.+ j e,*4m

Y _(4.35)

The application of the blade mode shapes and non-rotating coordi-

nate system gives O

T 1 4,
S . I I V I V

Svp Vp Vp
Vt-

0

Ott (4.36)
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where K is an integral operator defined as

K = ex I dz (4.37)

and integrand matrices are

---- I---- -- -- -I

o r oI

I I

L Fe 1 0-,,

( o (Fe, .) 1 *

0 o I o

0 -O - 0 l (4.38a)

I
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I 0 0

(4 .380)

oI

0 0

L A

(4.38c)

0 -  K-Vw 0o, V:,8F 3

I V

]ALJa I 1 ;

I A+ f f-- -

o -i oI:,> ±i IXXl o 1 o

(4.38d)

, i o  , o I o h,,

Fat 0 0 o

o } i _ 4- -4

(4.38e)
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4.5.3 Wing Aerodynamic Forces

The virtual work done by wing aerodynamic forces is ex-

pressed by

Tt (4.39)

The displacements uw , ww , Pw are described in terms of the mode

shapes as

Sj w} t 3{ 1i (4.40)

where

[S]= 3,n ~o * .. *

L' o, - .1 (4.41)

Then, the substitution of Eq. 4.40 into 4.39 gives

Q

Oe (4.42)
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where

L

[ A ] = [, .lA) [SdJV

4.1 JL [.5T [Aj a (4.43)

The matrices Aw , Aw and AG are derived from Eq. 3.32 as follows:

I 10

S(4.44a)

o 4pc(C.v,+

o 0 I ck VL(C +GwY
(4.44b)
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rI I I

0 ( aI(4.440)

- - - --

the rotor or wing motion as accurately as required.

4.6.1 Equations of Motion in General Format

The substitution of Eqsi. 4.20 and Eq. 4.10 into Eq. 4.15

For the jth blade mode

0I

, (.4.44c)

4.6 Final Equations of otion

In this part the final equations of motion will be derived.

They will be expressed in general format, so that any number of.

mode shades both for the blade and wing can be chosen to describe

the rotor or wing motion as accurately as required.

4.6.1 Equations of Motion in General Format

The substitution of Eqs. 4.20 and Eq. 4.10 into Eq. 4.15

gives the jth blade modal equations of motion. Note that time

derivatives are normalized by rotational speed as in Eq. 3.24.

For the jth blade mode

oo (4.45)
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where

(oil a (4.46a)

O( 0
a -1 o (4.46b)

oi 
o7 

L o 0 (4.46c)

r o wo o o V, "

{ P-} -- (4.46d)

o o o 0. o

O o o w2< O
(4.46e)

(C oj + Pj)

and the matrix IT] is defined in Eq. 4.11.
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Substituting Eqs. 4.21 and 4.10 into Eq. 4.18 yields the

wing equation.

For the wing mode

oo

a}+ A4[W&10} [W,]l o

+z ([TY[I,1S[MK( {J
-?i [T [cf lK1{Q(j)= (4.48)

-n lT clrcil I ) = M u-

where

all

V4, Is

-- ):• diagonal

0 matrix

(4.49)

o o0

[K]= 0 A o
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Loading matrix(Fj for the wing consists of aerodynamic

forces fi due to the rotor, and aerodynamic forces gi due to wing

motion itself.

-F, i*,

13: = (4.50)

Similarly, aerodynamic forces are derived.

For rotor aerodynamic forces

(p .j

C~.j T+ Pj E

[A J (4.51)

where
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C. 0 0

O O GJ (4.52a)

Pj p O o

0 - jw 1 Z K4 p G A (4.52b)

A 0 4 Q5 P1 0

o 4.o o 5.

-Gr- o -Rc _ . o

0 o 0 0 0

0 (4.52d)
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, o o o o 0.
(4.52e)

The excitation vector {e) is expressed as

V

v (4.53)

8.o

8,,

For wing aerodynamic forces

From Eq. 4.50

(4.54)

Loading to the wing due to rotor aerodynamic forces fi cor-

responding to ai is expressed from Eq. 4.36 as
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0
K [+Txi [ I]T r A[A'L [T]J
+ [rf 4 [ , t )

+ [T - [A' : (4.55)

Loading due to wing aerodynamic forces gi is described from Eq.

4.42 as

ts - .[At,] Laa) + [0,, A (4.56)

4.6.2 Equations of Motion for Nine Degrees of Freedom

For a typical case, nine degrees of freedom are considered

here. These degrees are rotor flapping motion (collective flap-

ping motion Q10' cyclic flapping motion Qlc and Qls ), rotor lag-

ging motion (collective lagging motion Q20 ' cyclic lagging motion

Q2c and Q2s
) , wing vertical bending motion al, wing chordwise

bending motion a2 and wing torsion a3.

These mode shapes are natural modes, therefore they are

coupled.

The final equations in matrix form are

[A] N + [aP j + [cl z - [o] l (4.57)
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where

V
QIC

G~s rV

Qar,

and [D] is a 9 x 6 matrix, as given below.

4 J

S.a 5 ( )
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I I I

f~EMm N L4 -
____ 7 .fi1 E

[c_
___ AILJ

~ -

-K[

I I I -[~1(4.59c)

56



(4.59d)
4.6.3 Equations of Motion for Nine Degrees of Freedom

with Uncoupled Modes

In order to have a better understanding of tilting prop-

rotor dynamics, a simple special case was considered. This case

is based on the assumption that the mode shapes are uncoupled.

Therefore, rotor motion is expressed as

+ oV j (Blo+ =A.A. -4 t. - )  (4.60)

The wing motion is also,

Ur o , + s a, + o 0 a (4.61)

The substitution of Eq. 4.60 and 4.61 into Eq. 4.59 gives

the following matrices for the same nine degrees of freedom
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equation as Eq. 4.57.

CAI= -8

1 o 0 0 0 o o w.,- 0

0 1 0 0 ( 0 0 -,

O 0 1 0 0 0 o -w',, o

O O O 0 - o o

0 o - o 1 0 0

0 0 (3 0 -0 ! -O 0

o 4 o - o o -- o 0 0

(4 .62a)
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o 0 0

O =0 2) rl00 F

0 0 2 o -LjWLjv '

o 0 C) -2l 3 2Q C -L47cL

o 0 0 2613 L ~W ~ 7

ALU- + we CaLTI Cj. ci~o,
~ WC NFT SAA~r !FW' C&-C 2TJ

2 &LT iCa. +4-.

Ji- lp1i C6j

(4.62b)
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0 00l 0 0 0 0-

o 0 0 (-26 0 0 0 0 0

C e kLa ]5L 0 ( f-TI iL~ 0 A LqAcL' 0

o pL kLs 0 Kis~ ( I 0 AL,jf

o j3IR l~~A q .~ F o 0 (ca" C.;

-KpF 4p4 + CG.Jh

(4.62c)
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o 0 F, a o 0

o 3 T:A o 0 . o

- FT, 0 0 0 0 Foe

O 0 Lp L Le 0 0

- L i 0 0 0 0 Lei

0LTj 0 Le
o - : ' o -0

+ Cc -, + , *

+cJI

(4.62d)
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New symbols will be defined below, but all these symbols

can be derived by applying the uncoupled mode shapes to the general

equations.

Pylon Motions

WS = II at =-

F 31 at

I - '4 at L "

a at

at (4.63)

Therefore the matrixT]if Eq. 4.10 is described as

Wewe o 0_ O

[T]= o VC o
-0 O

0 0 (4.64)

Aerodynamic Forces

(a) Rotor Aerodynamic Forces

L =-j ~' i (Fe,) -- d (4.65a)
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FPO=

FT = - a ls (Wa) $ d

S,- Ir Ci)C (4.65b)

L4Tv, 2A Ax~il

=j - 61+ S(F) A d (4.65c)

Lr VI* ckx

L -To 2

Lj , - 1( I S(Fo, d (4.65d)

Lai -rIb ( I) ckx (4.65e)
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where in general F,L expresses the forces corresponding to the

direction of flapping motion and lagging motion respectively. Sub-

scripts 8 and C describe the mode shape contributions to the aero-

dynamic forces; T and P show the derivatives for the perturbation

expression with respect to inplane velocity UT and out-of-plane

velocity Up; superscript + expresses the moment at the blade root.

FT=T -1 CF,) x)A

64

L 11Is ( os) Le = I (F*,)1AT (4.66)

, -= L LV ((4.67a)
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c...3  - t4 T & +'J 3

col - -a (1.- Pt

c.. t - ' ( Lr) (V ,

C.- (4.67b)

(b) Wing Aerodynamic Forces

Ca. = - I

Ca,.= - I A , I4 aX (4.68a)

C, - A65
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~C6. = - A , ad

- j I.

C-3 0A j (4.68b)

IL
C4  As L4

C. = A (4 .68c)

66. A41
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where A., A , and AG.. are components of matrix [AW.], [A],

13 i3 13

and [AG] respectively in Eq. 4.44.

Pitch-Flap Coupling

The pitch-flap coupling coefficient is expressed as

The rotor collective mode shape has zero slope at the root. There-

fore, pitch-flap coupling appears only in cyclic motion.

Natural frequencies

X8 : blade flapping natural frequency

A : blade lagging natural frequency

A1 : wing vertical bending natural frequency

A2 : wing chordwise bending natural frequency

A3 : wing torsion natural frequency

4.7 Equations for Gimballed Rotor

As discussed in Subsection 4.4, equations of motion (Eqs.

4.45 and 4.48) are applicable to the gimballed rotor.. The signi-

ficant difference between the gimballed rotor and the hingeless

rotor lies in the application of the blade mode shapes to the

rotor motion. The gimballed rotor has independent collective

mode shapes for the collective motion and cyclic mode shapes for.

the cyclic motion. Therefore, the above distinction is found in

the following matrices:

For blade equations
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0 0 0

o (

o 3 o a o
0 aJ o 0 -w o

For Rotor Aerodynamic Forces

0 0

Ai d- o o (4.71b)

0 w CO

(4.71b)
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o '9 O o q.
= 0 - 0

cc (C 1
I - rt. 0 - z (4.71c)

r = I o o i o 0

O o 0 C'j 0 (4.71d)

S(0) (o)o o 4.' ,. oO
AI) 25 - C (C)-og o o 0 o C)

(4.71e)

+ ,  o o
OFg1 * - 0 o

(4.71f)
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o (4 v., . 4's,

o o02. 7c+ ;:,

o V ((V), W - Fa, ) -i 4> F

0 
X0 4 [ oi k.F ,,I

a

- v ,+ ..) - k?. 1 j+

0

(4.71g)
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SECTION 5

NATURAL FREQUENCIES AND MODE SHAPES

OF THE ROTOR AND WING

5.1 Rigid Rotor

In order to obtain the natural frequencies and correspond-

ing mode shapes of the free vibration of the rotating blade, the

equations of motion are derived neglecting aerodynamic forces and

pylon motions in Eqs. 2.3 and 2.4.

+4e C[(d (E I) 0e )5a

- VT a - M = O(5.1)

ar

These equations of motion are rewritten as a usual eigenvalue prob-

lem to find eigenvalues and/or eigenvectors.

Boundary conditions for the rigid rotor are

at the root:

= o  "_ =oar
,. O a 0 (5.2)
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at the tip:

-= 0

e -o = = (5.3)

As a typical hingeless rotor, the Boeing rotor is chosen in this

study. Mass, stiffness distributions and built-in angle of twist

are shown in Fig. 8.

Nonrotating natural frequencies of the blade are shown in

Fig. 9. Almost no influence of the collective pitch change on

the natural frequency is found in the case of the rigid rotor.

In Figs. 10a and 10b, the first and second natural fre-

quencies of the rotating blade are shown versus rotor rotational

speed and inflow ratio. Inflow ratio is related to the collective

pitch as described in Eq. 3.9. At normal rotational speed (in

this case Q = 386 R.P.M.) the natural frequency variation due to

collective pitch change is shown in Fig. 11. Typical mode shapes

up to the 4th mode are shown in Figs. 12a through 12d. Blade mode

shapes are normalized with respect to the blade radius at the

point of maximum deflection in either out-of-plane or inplane

bending.

5.2 Gimballed Rotor

In the case of the gimballed rotor, rotor motion is ex-

pressed by collective modes and cyclic modes (in Ref. 17 and 18).

Hence, based on Eq. 5.1, the eigenvalue problem should be solved

with boundary conditions for collective modes and cyclic modes

for the powered flight, respectively.

Boundary conditions for collective modes are defined to

yield symmetrical modes for flapping and lagging. Therefore,

at the root:

lt.= o a

(5.4)

72O =O

72



at the tip;

_1E.- = 0 C(5.5)

Boundary conditions for cyclic modes which consist of anti-

symmetrical modes for flapping motion and symmetrical modes for

lagging motion are expressed as:

at the root:

0- O (5.6)

at the tip:

= O = O
= O =(5.7)

As a typical case, the Bell design is considered here. Mass,

stiffness distributions and built-in angle of twist are shown in

Fig. 8.

Blade nonrotating natural frequencies for the gimballed

rotor are shown in Fig. 13. In Fig. 13b, the first natural fre-

quency for rigid body flapping motion has non-zero natural fre-

quency due to the rubber hub spring, which is intended to increase

control power and damping.

In Figs. 14 and 15 it is shown that collective pitch change

has a large influence on the natural frequency variation except for

the first cyclic mode natural frequency (rigid body mode). Mode

shapes for the gimballed rotor are shown in Figs. 16 and 17. The

normalization system is the same as that of the rigid rotor.
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5.3 Wing

The equations of motion for free vibration of the wing are

the same as Eq. 2.5, 2.6, and 2.7 when the aerodynamic forces Fx,

F , and M are eliminated from these equations. Boundary condi-
zy
tions are as follows:

(a) at the root:

Uw O auw-ai
~~r~ ~ ~ - o ~;;

p 0 = o (5.8)

(b) at the wing tip:

j L l

..
SN Ms Y~ NMe *Ve 0 (5.9a)

+ NM Y = (5.9b)

6.- 1

74 = O (.9c)
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-. + N k
4 NM+L + I P O (5.9d)

- (Elc-(FW A.9r C& OW

* N Is , =O (5.9e)

The relationship between pylon motions and wing deflections is
defined in Eq. 2.8. The.rotor and the pylon are treated as

lumped masses at the wing tip in these equations; as in the actual

structural dynamic test, the proprotor blades will be removed and

replaced by equivalent weights. Note that in Eq. 5.9 the blade is

treated as a lumped mass which has equivalent weight and equivalent

blade flapping inertia IB.  This flapping inertia leads to lower

wing frequencies, especially in torsion, than when the blade is

treated as a lumped mass with equivalent mass and without equi-

valent blade flapping inertia.

The same wing is used for the Boeing and the Bell design;

mass and stiffness properties are shown in Fig. 18. The differ-

ences appear in the pylon and blade mass properties shown in Table

1. No built-in angle of twist, dihedral angle, and sweep angle are

considered here.

Natural frequencies of both cases are listed in Table 1, and

mode shapes are described in Fig. 19 for the Boeing case and in
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Fig. 20 for the Bell case. Wing mode shapes are normalized with

respect to the wing semispan at the point of maximum deflection

in either vertical bending or in chordwise bending. However,

the mode shape corresponding to the third natural frequency of

the wing, which is predominantly one of wing torsional deflec-

tion, is normalized at the point of maximum torsional deflection.
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SECTION 6

PROPROTOR DYNAMIC CHARACTERISTICS

6.1 Introduction

In this section the eigenvalues and frequency response of

the system will be discussed. The results are compared with those

of Ref. 13. The analyses were conducted for two types of prop-

rotor design: the hingeless rotor Boeing design, and the gimballed

rotor Bell design. The case selected to be investigated is cruis-

ing flight in the airplane mode for each design. The data for the

calculation are listed in Table 1. One should notice that the

equations of motion shown in Eq. 4.57 were derived based on mass-

normalized coupled modes. However, for the sake of aiding physi-

cal understanding of the frequency response and eigenvalue analy-

sis, those results are based on physical mode shapes, as presented

in Figs. 12, 16, 17, 19, and 20.

The primary differences between the Ref. 13 analysis and

this report are tabulated below.

This Report Ref. 13

Natural Frequencies Calculated Experimental
Data Data

Mode Shapes

Wing Coupled Modes Uncoupled Modes

Rotor Coupled Modes Uncoupled Elastic
Modes for Inertia
Terms; Rigid-Body
Mode for Aero-
dynamic Terms

Structural Damping No Yes
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The case studies done in the present study are tabulated

below:

Degree-of-
Freedom 9 Degree-of-Freedom 18 Degree-of-Freedom

Mode Shapes

Blade Rigid Body Uncoupled Coupled Coupled
Elastic

Wing Coupled Coupled Coupled Coupled

Analysis Eigenvalue Eigenvalue Eigenvalue Eigenvalue
and Eigen-
vector

Frequency
Response to
UG' VG' WG'

81s

The general symbols Qjc' Qjc' Qjs, and ai for blade and wing

motions are convenient for the theoretical derivation of the equa-

tions, but from the physical understanding aspect, it would be

better to choose other symbols. For this section, except for the

eigenvalue analysis, the following system will be used to express

blade and wing motion for the 9 degree-of-freedom system: flapping

and lagging motions which are designated as 8 and 1, respectively,

and wing motions are ql' q2, and p, which express the vertical

bending, chordwise bending, and torsion, respectively.

The correspondence between these sets of symbols is tabu-

lated below:
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New Symbols General Symbols

Bell Design Boeing Design

Bo Predominant Q20 Q2o
Flapping

81c  Motion Qlc Q2c

81s Qls Q2s
----------------------------------------------------

Predominant Q10 Q10
o0 Lagging

ilc Motion Q2c Qlc

is Q2s Qls
---------------------------------------------------------------

q1 Wing Vertical al a1
Bending

q2 Wing Chordwise a2 a2
Bending

p Wing Torsion a3 a3

6.2 Eigenvalues and Eigenvectors

The system stability characteristics are shown in Figs. 21

through 24.

6.2.1 Addition of Higher Mode Degrees of Freedom

The eigenvalue variation with number of degrees-of-freedom

considered is shown in Fig. 21. The 9 degrees-of-freedom include

Q10' Qlc' Qls' Q20' Q2c' Q2s' al', a2' and a3 (,0' 1Ic' 1ls' l o'

S1c' ls' l' q2', and p) corresponding to the blade's first two

natural frequencies and the wing's first three natural frequencies.

This system has 9 eigenvalues and 9 corresponding eigenvectors.

The 9 eigenvalues are denoted by their frequencies, and the partici-

pation of the degrees-of-freedom in the eigenvectors is indicated

below:
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Present Ref. 13

Eigenvalue Symbol Participation Bell Boeing

Q1 Low frequency Q1  8-1 r-1

o Collective Q1

+ High frequency Q1  B+1 +1

Q2 Low frequency Q2 -1 8-1

Q Collective Q28

2 High frequency Q2  +l 8+1

a1 The first wing 91 q1
frequency

a2  The second wing. q2 2
frequency

a3  The third wing p p
frequency

In the 18 degree-of-freedom system two higher elastic

modes for the blade and three higher elastic modes for the wing

are added to the 9 degree-of-freedom system. The same designa-

tion system as used for the 9 degree-of-freedom is employed for

the higher eigenvalues. The results of the 18 degree-of-freedom

analysis show that the addition of more degrees of freedom does

not substantially influence the basic system eigenvalues since

the added degrees of freedom have large natural frequencies in

comparison with the original values (see Table 1). The 18 de-

gree-of-freedom system eigenvalue locations are shown in Fig. 22.
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6.2.2 The Sensitivity to Mode Shape

Eigenvalues and damping ratios (the fraction of the criti-

cal damping) for three different types of mode shapes for the

blade are shown in Fig. 23. One is the rigid-body mode (with

spring restraint at the root), another is the elastic uncoupled

mode, and the third is the elastic coupled mode, while the wing

mode shapes considered are restricted to the elastic coupled mode

shapes only.

The results tell that mode-shape types make negligible dif-

ference in the frequency of the eigenvalues; however, they in-

fluence the damping a lot.

In the Bell design, there is almost no difference between

the rigid mode and the elastic mode in the damping ratio. This is

due to the similarity between the rigid-body mode and the elastic

uncoupled mode. In the elastic coupled mode, a slightly higher

damping is obtained.

In the Boeing design, each mode-shape type gives a differ-

ent damping. For the first natural frequency mode of the blade,

the rigid-body mode calculation is conservative rather than that of

the elastic coupled mode-shape type, and for the second natural

frequency mode, it is nonconservative. This is because the first

mode has both positive out-of-plane and inplane deflection, while

the second has a positive out-of-plane and a negative inplane

deflection as shown in Figs. 12 (a) and (b). The corresponding

positive out-of-plane deflection of the first mode increases the

damping, while the associated negative inplane deflection of the

second mode reduces the damping. This explanation also holds for

the Bell case. The damping of the second collective elastic coupled

mode of the Bell rotor is lower than that of the rigid-body mode.

The second collective mode has a positive out-of-plane deflection

and a small positive inplane deflection. However, the rotation

direction of the rotor is different for the Bell and the Boeing
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designs. Therefore, the positive inplane deflection mode of the

Bell rotor is physically the same motion as that of the first

mode of the Boeing rotor. The coordinate system related to this

is shown in Fig. 5, and the contribution to the damping of the

coupled mode shape can be seen in the term Gji in Eq. 4.33.

In conclusion, the use of the elastic coupling mode affects

the damping significantly. The coupled mode with a combination of

forward out-of-plane deflection (upward in helicopter mode) and

inplane deflection opposing the rotor direction of rotation, or

vice versa, increases the damping over that of the rigid-body-

mode calculation. The coupled mode which has forward out-of-plane

deflection and inplane deflection proceeding with rotor direction

of rotation, or vice versa, decreases the damping. This holds

only for the first beam bending mode; in other words, the coupled

mode without nodal points between the root and the tip.

6.3 Frequency Response

The frequency response analysis is dealt with in this sub-

section. These calculations are all based on mass-normalized

coupled modes for both the blade and the wing. However, for con-

venience in physical understanding, the results of the frequency

response calculation are presented in terms of length-normalized

mode shapes in Figs. 25 through 32.

6.3.1 Frequency Response to the Gust

Frequency responses to the vertical gust uG, the lateral

gust vG, and the longitudinal gust wG for both the Bell and the

Boeing designs are shown in Figs. 25 through 30.

As a whole, the behavior of the frequency response is quite

similar to that of Ref. 13 in spite of the differences in the theo-

retical model stated in Subsection 6.1.

The detail characteristics of the frequency response are

discussed next.
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6.3.1.1 Blade Collective Motion Response (Bo o)

Collective motion responses have a close relationship with

the wing motions (vertical bending ql, chordwise bending, q2, and

torsion, p). They have strong resonances with these modes. In
the case of uG and vG inputs, the static response (w equal to
zero) and the lower-frequency-range response are negligible. How-

ever, the response to the longitudinal gust wG has a significant

static and lower frequency range response. Resonances of the col-

lective modes occur in the response to the longitudinal gust input.

Comparing the Boeing design with the Bell design, the Boeing has

a larger response in collective responses to each gust input.

6.3.1.2 Blade Cyclic Flapping Motion Response (B1 c and B1s)

For the cyclic inputs (uG and vG ) there are not strong

resonances between cyclic flapping motions and the wing vertical

bending motion (ql). In the upper frequency range, the high fre-

quency flapping mode (8+1 mode) has a significant resonance ap-

pearing in the flapping motion. In the lower frequency range,

there is a resonance of the low frequency flapping mode (8-l mode)
for the Boeing design and the low frequency lagging mode (-1l mode)
for the Bell design.

For the collective input (wG) the response of the cyclic

flapping motion has resonances with the wing motion modes (ql' q2'
and p) in both designs.

6.3.1.3 Blade Cyclic Lagging Motion Response (lc and Cis )

In the Bell design.there is an evident resonance in the

cyclic lagging motion response (S1c and 'ls) to the vertical gust

input (uG) in proximity to the wing vertical bending mode (ql).

To the lateral gust input (vG), a low frequency lagging mode

(-1l mode) resonance appears in the lagging motion response.

In the Boeing design there cannot be seen such obvious

resonances in the response to the vertical and lateral gust inputs.
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The static response is much larger than that of the Bell design

due to the soft inplane design (the blade lagging natural frequency

is less than unity).

For the collective input (wG), the responses of cyclic lag-

ging motion have resonances with the wing motion modes (ql', q2'
and p) in both designs.

6.3.1.4 Wing Motion Response (ql' q2 , and p)

The wing motion includes resonances in each wing mode.

Although the response magnitude is quite large, it is expected to

become rather small if structural damping is included.

6.3.2 Frequency Response to Control Pitch Angle

Frequency responses to longitudinal cyclic pitch input are

shown in Figs. 31 and 32.
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SECTION 7

CONCLUSIONS AND COMMENTS

7.1 Conclusions

This study has been devoted to the development and evalu-

ation of a theoretical model of the proprotor on a cantilever

wing, operating in normal cruising flight. This theory expresses

the wing and blade motions in coupled form, and can include any

number of mode shapes required to express the motions accurately.

It has been applied to an investigation of the dynamic character-

istics of the Bell and the Boeing designs.

Based on the theoretical results included in this study,

the following conclusions may be stated:

(a) The choice of mode shape (rigid-body mode or elastic-

coupled mode) affects the damping significantly. The
dependency of the damping on the mode shape can be esti-

mated for the first beam bending mode. The blade inplane

deflection opposing the rotor direction of rotation,
accompanied by the forward out-of-plane deflection, in-

creases the damping, comparing it with the rigid-body

calculation. The inplane deflection proceeding in the

rotor direction of rotation decreases the damping. The

mode shape has little influence on the frequencies of

the system.

(b) The results of the frequency response are quite similar

to those of Ref. 13, in spite of the difference in the

mode shapes. The amplitude of the response is slightly

different, since structural damping was not included in

the present calculation, and the mode shapes used were

different.
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(c) The analysis of the eighteen degree-of-freedom system showed

that the higher-frequency degrees of freedom have small

influence on the basic degrees of freedom.

7.2 Suggestions for Future Research

A direct and useful extension of the present study would be

the stability analysis of the proprotor aircraft, with respect to

air resonance and flutter. This theory will be very powerful be-

cause the eigenvector components can be compared directly without

any adjustment between components. Mach number effects of the

blade should be included for the flutter analysis.

Stresses or bending moments of the wing or blade can be pre-

dicted from the motions of the wing and blade obtained from this

analysis. In addition, this analysis may be applied to the de-

velopment of an automatic control device to alleviate the gust re-

sponse of the vehicle.
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TABLE 1

DESCRIPTION OF THE BELL AND THE BOEING PROPROTOR
DESIGNS CONSIDERED IN THIS REPORT

BELL BOEING

ROTOR

Type gimballed, stiff cantilever, soft
inplane inplane

Number of
blades, N 3 3

Radius, R 156 in. 150 in.

Chord, CB 18.9 in. 14 in.

Lock number,y 3.83 4.04

Solidity, a 0.089 0.115

Pitch/flap -15 deg. 0
coupling, 63

Collective pitch, 1.25 deg. 1.0 deg.

8D

Lift-curve slope,a 5.7 5.7

Drag Coefficient, 0.0065 0.0065

CDo

Rotor rotation +1 -1
direction,

Inflow ratio, X 0.7 0.7

Rotational speed,102 458 RPM 386 RPM
48.9 rad/sec 40.4 rad/sec

Blade Natural Frequencies

first, Xl1/J1 1.02/rev (7.78Hz) 0.827/rev.(5.32Hz)

second,X2 /1Q1  1.34/rev (10.2Hz) 1.32/rev (8.49Hz)

third, A3/IQl 4.35/rev (33.2Hz) 3.40/rev (21.9Hz)
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TABLE 1 CONTINUED

ROTOR(cont'd) BELL BOEING

fourth,X 4 /II 10.1/rev(77.1Hz) 6.77/rev(43.5Hz)

Collective Natural
Frequency

first,~lo ) /I 1 1.31/rev (10.0Hz)

second,A2o)/I I 2.12/rev (16.2Hz)

third, Ao()/M 4.93/rev (37.7Hz)

fourth X(o)/Inj 10.6/rev (80.9Hz)

Blade flapping 105 slug-ft2  150 slug-ft 2

inertia, I B

One blade weight, MB 133 lb 124 lb

WING

Semispan, L 200 in. 200 in.

Chord, cw 62.2 in. 62.2 in.

Mast height, h 51.3 in. 51.3 in.

Sweep 0 0

Dihedral 0 0

Lift-curve 5.7 5.7
slope, aw

Drag coefficient, 0.004 0.004
CDow

Moment coefficient C -0.005 -0.005mo

Aerodynamic center, 0.01 0.01
e = xA /C ww

Angle of attack, awo 2.0 deg 2.0 deg
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TABLE 1 CONCLUDED

BELL BOEING

WING (cont'd)

Natural Frequencies

first,A l/Jal 0.347/rev(2.65Hz) 0.365/rev(2.35Hz)

second,A2 /Q1 0.622/rev(4.75Hz) 0.653/rev(4.20Hz)

third, A3 /fl 1.09/rev(8.32Hz) 1.ll/rev(7.14Hz)

fourth,A4/ll 2.37/rev(18.1Hz) 2.47/rev(15.9Hz)

fifth, A5 /IQI 3.76/rev(28.7Hz) 3.95/rev(25.4Hz)

sixth, A6 /Q1 10.6/rev(80.9Hz) 12.5/rev(80.4Hz)

PYLON

Weight, M 1420 lb 2000 lb

Yaw inertia, I 164.8 slug-ft2  250.0 slug-ft 2

Pitch inertia, I 190.0 slug-ft2 2500 slug-ft2

2 19.0slgft25.2
Roll inertia, I 42.4 slug-ft2  30.0 slug-ft 2

pr

FLIGHT CONDITION FOR CALCULATIONS, A = 0.7

Cruising speed, V 250 kt 218 kt

Cruising altitude sea level sea level
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APPENDIX A

DETAILED DERIVATION OF THE EQUATIONS OF MOTION

A.1 Blade Motion

The blade coordinate system is described in Section 2, and

in Figs. 2 and 3. The position vector r defining an arbitraryn
point on the r-axis of the nth blade with respect to the inertial

x-y-z system becomes

0 0 A.@r .AM j

(A.1)

where r0 is the position vector which expresses translation at the

wing tip as

YO L (A.2)

The square of the velocity at an arbitrary point on the r-

axis is expressed as

+ 4 2 2..2 • k:! + riq )
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The total kinetic energy TE for N blades is expressed as

it . .

TC 2 a trpCOC~+2n~e~ ~rG

where m is the blade mass per unit length.
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The potential energy UE of N blades is

4 UEI), + CEo~ + '~

a r (A.5)

The virtual work done by the centrifugal forces 6WCF is

described as

A, - )FWF d (A.6)

A. 2 The Work Done by Blade Aerodynamic Forces

Aerodynamic forces acting on the nth blade () n are derived

in the z-y-z coordinate system from the PZ and P0 components

as

-J Lr Fi ( A.7

Then the virtual work done by the aerodynamic forces of all blades

6WAF is described as
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A.3 Lagrange's Equations

In addition to the above, the kinetic energy and potential

energy of the wing derived from the simple beam theory are append-

ed.

Then, Lagrange's equations are given by

= T aT + U (A.9)

where T, U and Qi are respectively, the total kinetic energy, po-

tential energy and generalized forces of the system, and

%i e , I ,,, Y,., -, 33 Pr, . .,, (A.10)

Finally, the above represents the derivation of Eqs. 2.4,

2.5, 2.6, 2.7, 2.8, 2.10, 2.11, 2.12, 2.13, and 2.14.
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APPENDIX B

STRESS ANALYSIS OF THE ROTOR BLADE AND THE WING

In this appendix, the method of deriving the stresses in

,the rotor blades and in the wing due to the gust are briefly

stated. If the deformation of an elastic structure has been de-

termined, it is a straightforward procedure to determine the

stresses corresponding to this deformation. The mode acceleration

method discussed in Ref. 15 is very suitable because the stresses

can be determined accurately and directly when the deformation has

been computed in terms of displacements of normal modes.

Equation 4.57 is written here again in matrix form as

(A]% + [C] Ic X = [D eI+I +(B.1)

where [A], [B] and [C] are square matrices to define the coeffi-

cients of equations derived from mass, stiffness and aerodynamic

forces, and the [D] matrix is the excitation. The generalized

coordinates {x} and excitation input {e} are

as,

The static force {F} from the lift or drag of the wing and rotor

in steady flight may be included if the total stresses are required.

When only the additional stress due to the gust or control input

varying with time is required, the {F} matrix may be dropped.
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In general, the stress at a particular point p in tie rotor

wing structure is expressed by

['P=I X (B .3)

where the [A p] matrix is a constant matrix that represents the

stress at the point p due to a unit displacement in the normal

mode.

The static mode displacements are given by setting {I} = 0

and {:} = 0 in Eq. B.1.

fxjttcI = C3c' [D3 Ie Cc-' r [I (B.4)

Therefore, the static stress becomes

ls} ~tiC. =1A pj %lIitrc (B.5)

When the rotor and wing are vibrating, the total displacements of

the rotor or wing can be expressed as

Ij = L-c]-' [D] 1e + CC]-' 1Y}

- c-'[A3 ;X - cl EBI; (B.6)

Substituting Eqs.B.5 and B.6 into Eq. B.3, the total stress be-

comes

IPI ~}%t~tiC LAd31T[A CY'[A]

- [Ap][c]-'B] j} (B.7)

This result gives the stress in the rotor or wing at any instant

in terms of the static stress and an additional stress due to

the vibration.
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